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A B S T R A C T

The steady-state operation of a polymer journal bearing is investigated by means of an innovative numerical
methodology, based on the definition of a viscoelastic Green’s function intrinsically accounting for the circular
hallmark of the contact domain. Crucially, results show, in terms of pressure, film thickness, and friction,
the occurrence of a peculiar viscoelastohydrodynamic (VEHL) regime. This has critical consequences in
applications, where the bearing capacity of the system may be affected. Ultimately, by focusing on different
contact configurations, we show that the VEHL regime in polymer journal bearings is governed by three
independent parameters, namely the Hersey number and the dimensionless velocities of the two interacting
bodies.
1. Introduction

The importance that soft matter lubrication has gained in the in-
dustrial panorama is indubitable. This marked interest reflects the
growing request for new polymers (Fusaro, 1990; Padovan et al.,
1992; Yousef, 2016; Friedrich, 2018), biomedical implants (Askari and
Andersen, 2018; Heß and Forsbach, 2021), and soft tissues (Heepe and
Gorb, 2014). Indeed, these materials have a number of desirable qual-
ities, including resistance to environmental conditions, light weights,
and lower manufacturing costs. As a result, the continuous transition
from metals to polymers in recent decades: seals (Dapp et al., 2012;
Vlădescu et al., 2019), polymer bearings (Koike et al., 2012), and
dampers (Shukla and Datta, 1999) are just examples. Nonetheless, be-
cause of their complex rheology, such materials’ mechanical responses
are sometimes difficult to predict: they display a significant time- and
temperature-dependent behavior that can be characterized as viscoelas-
tic. A clear understanding of the performance of this class of materials
is indeed challenging, especially when other phases are involved as it
occurs in lubricated contacts, but is of the utmost importance. Indeed,
in spite of the considerable efforts in investigating dry contact mechan-
ics involving soft materials (Hunter, 1961; Grosch, 1963; Persson, 2001;
Carbone et al., 2009), limited research has been carried out to highlight
the mechanisms governing the interactions at the lubricated interface
in the presence of viscoelastic materials (Scaraggi and Persson, 2014;
Putignano et al., 2016; Putignano, 2020; Putignano and Campanale,
2022). Furthermore, the presence of roughness may exacerbate even

∗ Corresponding author at: Department of Mechanics, Mathematics and Management, Politecnico di Bari, Via Orabona 4, 70100, Bari, Italy.
E-mail address: carmine.putignano@poliba.it (C. Putignano).

more the complexity of the contact problem (Pandey et al., 2016;
Venner and Lubrecht, 2000; Putignano et al., 2021). Pioneering studies
were carried out by Rohde et al. (1979), who analyzed the effects of vis-
coelasticity and fluctuating loads on the elastohydrodynamic squeeze
film, and by Elsharkawy (1996), who developed a numerical procedure
to study the visco-elastohydrodynamic lubrication (VEHL) line contact
problems based on an iterative Newton–Raphson scheme. Later, Hooke
(1997) investigated the relationship between the lubrication behavior
and dry contact pressures when soft solids are considered; in particular,
in his analysis he found that the pressure distribution remains close
to that obtained in dry, frictionless contact since the corresponding
deformations are very large with respect to the film thickness. An-
other contribution has been provided by Scaraggi and Persson (2014),
who examined the impact of random surface height fluctuations in
lubricated contacts when linear viscoelastic solids are involved, and
particular attention has been paid to the effects on the separation
field and traction at the contact interfaces. Furthermore, Putignano
and Dini (Putignano and Dini, 2017; Putignano, 2020; Putignano and
Campanale, 2022) introduced a generalized numerical methodology
for capturing fluid–solid interactions, that couples a Boundary Ele-
ment (BE) approach for solid viscoelastic deformation and a finite
difference scheme for fluid flow dynamics, with good agreement with
experimental results (Stupkiewicz et al., 2016).

It is evident that these interactions occurring at the lubricated
interfaces are critical in a variety of contexts, including power trans-
mission components: indeed, the role of lubrication is fundamental
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Fig. 1. Schematic of the journal bearing.

in rotor dynamics applications, as it reduces the level of wear of
the contacting pairs. Journal bearings are, indeed, crucial components
in a variety of industrial applications. Indeed, they are commonly
used in various subsystems in engines and power trains, such as for
crankshaft and camshaft: the piston pin-bore bearing and the big-end
bearings are just possible examples (Crolla, 2009; Rahnejat, 2010).
These components are also critical in the aerospace industry, in the
ocker shaft of rocker-arm valve train systems, or in industrial tur-

bines for power generation (Chasalevris and Dohnal, 2016). Hence,
esearchers worldwide made significant efforts to reach a comprehen-
ive understanding of the journal bearings performances under different
perating conditions (Reynolds, 1886; Hamrock et al., 2004; Linjamaa

et al., 2018; Eder et al., 2018; Boidi et al., 2020; Ielchici et al., 2020).
The theoretical analyses of the elastic distortion of journal bearings
were motivated by the experimental work of Carl (1964), who was able
to investigate the impact of elastic deformations, i.e., the cavitation
angle rises, the pressure peak falls, and the minimum film thickness
point shifts toward the maximum pressure location. Higginson (1965)
nvestigated the performances of a journal bearing with a thin elastic
ayer, but the simplified treatment of the elastic problem, assuming the
istortions to be proportional to the locally applied pressure, led to
otable discrepancies with the actual bearing performances. The latter
ere addressed by Donoghue et al. O’Donoghue et al. (1967), where

he authors provided an effective approach to the elastohydrodynamic
roblem for an infinitely long journal bearing in the presence of an

isoviscous fluid, achieving extremely good agreement with experimen-
tal results (Carl, 1964). The problem of the compliant journal bearing
was also investigated by Benjamin and Castelli (1971), who faced the
elastic problem with different methods, while Hooke and O’donoghue
(1972) assessed the EHL problem of soft materials, observing, for an
elastomer lined journal bearing, deviations of the pressure distribution
from the Hertzian solution as the eccentricity ratio is increased: the
film thickness becomes negligible with respect to the deformation of
the soft surface. Furthermore, relevant studies were carried out by Oh
and Huebner (1973), who further explored the lubrication of a finite-
length flexible bearing using a finite-element technique, and by Conway
et al. in Conway and Lee (1975), Mak and Conway (1977), Conway
nd Lee (1977). In particular, in Conway and Lee (1975), the authors

investigated the elasticity effect in an infinitely long bearing, assum-
ing, at first, that the lubricant is isoviscous and, then, extending the
investigation to the case of a pressure-dependent viscosity. In addition,
as made by Higginson (1965), the authors made the hypothesis that
he radial deformation linearly depends on the pressure distribution.
n the other hand, in Mak and Conway (1977), the lubrication of

a long, porous, deformable journal bearing was also investigated: the
response of the bearing, provided the bearing shell thickness to be
much smaller than the peripheral length of the bearing, has been
modeled as a Winkler foundation. In Conway and Lee (1977), the
2 
same approach has been used to assess the performance of a short
flexible journal bearing. Furthermore, Profito (Profito and Zachariadis,
2015; Profito et al., 2019) proposed a Finite Volume Method based on
Elements (FVMbE) scheme to assess statically loaded journal bearing,
with particular attention to the case of a typical internal combustion
engine connecting rod big-end bearing.

Crucially, this huge variety of theoretical and numerical efforts to
fully understand the response of journal bearings has focused on linear
lasticity: however, due to the encroaching role of polymers in the
resent and coming industrial panorama, special attention to soft lu-

brication involving polymer-based materials is needed. To this regard,
several experimental campaigns have been carried out and particular
attention has been paid to water-lubricated rubber journal bearings,
which can avoid oil spill due to leakage into critical environment.
ndeed, with respect to oil-lubricated metal bearings, they can reduce
he consumption of lubricating oil and, nonetheless, friction, wear,
nd noise. Moreover, these bearings can accommodate misalignments
nd are easy to maintain, due to their simple structure. These advan-
ages explain why water-lubricated bearings are now commonly used
n several rotating machineries, such as in military crafts propulsion
ystems (Orndorff, Jr., 1985; Cabrera et al., 2005; Liu and Li, 2021).

The level of theoretical understanding for polymer journal bearings
and for the related frictional performances is, however, still insuf-
icient: in particular, a clear assessment of the role played by the
iscoelastic rheology associated with the soft bodies is still missing.
ndeed, recent theoretical investigations (Putignano and Dini, 2017;

Putignano, 2020) have shown the existence of a peculiar viscoelastic-
hydrodynamic lubrication (VEHL) regime, where solid viscoelasticity
determines a marked difference, in terms of pressure, film thickness and
ultimately friction, compared to classic EHL. This has to be properly
evaluated also for journal bearings. Thus, in this paper, we present a
contribution in this direction by focusing our attention on the infinitely
ong polymer journal bearing sketched in Fig. 1. In particular, our

goal is to understand the role of viscoelastic rheology in the steady-
tate operations of the bearing. The present methodology paves over
he mathematical formulation introduced by the authors in Santeramo

et al. (2023b) for conforming and non-conforming surfaces, based on
the definition of the Green’s function for the dry contact between
a rigid pin rolling about the center of an infinite viscoelastic holed
space. Specifically, the Green’s function takes into account the circu-
lar characteristic of the contact domain. Hence, here we develop a
Boundary Element Method (BEM) to numerically assess the lubricated
contact in a journal bearing. Importantly, as it will be shown later, the
definition of such Green’s function is crucial: in fact, the employment
of the classical half-plane Green’s function (Hamrock et al., 2004;
Carbone and Mangialardi, 2004; Carbone and Putignano, 2013) would
lead to misleading solutions in terms of film thickness and pressure
istribution, thus in terms of the bearing capacity and behavior of

the system. Furthermore, it should be noted that the development of
such BE techniques results in significantly lower computing complexity
when compared to Finite Element approaches. This exacerbates when
multiple scales are considered in the analysis.

The paper is organized as follows. Section 2 contains the mathe-
matical formulation of the contact problem, and Section 3 presents the
results for the polymer journal bearing, enlightening the importance
of viscoelasticity on the bearing performances. Three different config-
urations are investigated. In the hard-on-soft configuration (HS) the
shaft is assumed to be rigid and the bearing is soft. In the soft-on-hard
onfiguration (SH), the shaft is soft and the bearing is rigid, and, finally,

in the soft-on-soft configuration (SS) both the interacting pair are soft.
Hence, we focus on the pressure and film thickness distributions, in
the case of a hard-on-soft configuration, when the journal rotating
speed is increased while keeping the angular speed of the bearing
onstant, showing how the coupling between solid viscoelasticity and

fluid viscous losses significantly affects the bearing response.
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2. Mathematical formulation

Lubricated contacts involving deformable bodies are characterized
by a strong coupling between the elastic, or viscoelastic, problem
governing the deformation of the bodies and the Reynolds equations.
Specifically, the deformation experienced by the bodies is governed
y the pressure distribution, which is the solution of the Reynolds

equations. The latter is determined by the lubricating film thickness,
which intrinsically takes into account the displacement field of the
interacting pair. Now, before dealing with the equations governing
ressure and film thickness distributions, it is useful to recall how

linear viscoelastic materials can be modeled from a mechanical point
of view (Christensen, 2012). In particular, under isothermal conditions,
the constitutive relation between stress and strain is:
𝜀(𝑡) = ∫

𝑡

−∞
𝑑 𝜏 𝐽 (𝑡 − 𝜏)𝜎̇(𝜏) (1)

where 𝜀(𝑡) denotes the time-dependent strain, and 𝜎̇(𝑡) is the time
derivative of the stress. Moreover, 𝐽 (𝑡) is the so-called creep function,
which satisfies the causality principle, namely 𝐽 (𝑡 < 0) = 0. As shown
by Christensen (Christensen, 2012), 𝐽 (𝑡) is equal to:

𝐽 (𝑡) =  (𝑡)
[

1∕𝐸0 − ∫

+∞

0
𝑑 𝜏  (𝜏) exp (−𝑡∕𝜏)

]

(2)

where 𝐸0 is the rubbery modulus of the viscoelastic material, 𝐶(𝑡) is the
reep spectrum, 𝜏 is the relaxation time, and (𝑡) is the Heaviside step
unction. To characterize any real viscoelastic material, in numerical
imulations, Eq. (2) is generally discretized:

𝐽 (𝑡) =  (𝑡)

[

1∕𝐸0 −
𝑛
∑

𝑘=1
𝐶𝑘 exp

(

−𝑡∕𝜏𝑘
)

]

=  (𝑡)

[

1∕𝐸∞ +
𝑛
∑

𝑘=1
𝐶𝑘

(

1 − exp (−𝑡∕𝜏𝑘
))

]

(3)

with 𝐸∞ being the high-frequency modulus, or glassy modulus, of the
material.

Thus, let us focus on the contact problem under analysis and de-
termine the bearing response under steady-state operating conditions.
In particular, we move from the mathematical formulation presented
n Santeramo et al. (2023b), where the authors proposed a Green’s

function approach to assess steady-state viscoelastic circular contacts.
Now, under the assumptions that the solids are homogeneous and

he viscoelastic properties do not show any spatial dependency, re-
alling that the system is invariant under rotations and the elastic–
iscoelastic correspondence principle (Lakes, 2009; Christensen, 2012;

Carbone and Putignano, 2013; Putignano, 2021), we can express, in a
olar coordinate system, the relationship between the total displace-
ent 𝐮 = 𝑢𝑟𝐞𝑟 + 𝑢𝜃𝐞𝜃 and the stress 𝝈 = 𝜎𝑟𝐞𝑟 + 𝜎𝜃𝐞𝜃 :

𝐮(𝑠, 𝑡) = ∫

𝑡

−∞
𝑑 𝑡′ ∫

2𝜋 𝑅
0

𝑑 𝑠′ 𝐽 (𝑡 − 𝑡′)𝐆(𝑠 − 𝑠′)𝝈̇(𝑠′, 𝑡′), (4)

with 𝑅 being the radius of the particular contact domain, 𝑠 = 𝑅𝜃 and
𝑠′ = 𝑅𝜃′. Moreover, 𝑡 is the time and 𝐆 (𝑠) is the spatial Green’s tensor.
From Eq. (4), it can be noticed that inertial effects have been neglected.

Thus, recalling that the hysteretic losses are governed by the normal
contact pressure, we focus on the normal contact problem. Specifically,
as presented in detail in Santeramo et al. (2023b), we can then
rephrase Eq. (4) as:

𝑢𝑟(𝑆) = ∫

2𝜋 𝑅
0

𝑑 𝑆′ 𝑟𝑟(𝑆 − 𝑆′, 𝜔) 𝜎𝑟(𝑆′), (5)

with 𝜔 being the velocity of the contact patch, 𝑆 = 𝑠 − 𝜔𝑅𝑡 and 𝑆′ =
′ − 𝜔𝑅𝑡. Furthermore, 𝑟𝑟 (𝑆) is the so-called viscoelastic steady-state
reen’s function, which is equal to:

𝑟𝑟 (𝑆) = 𝐽 (0)𝐺𝑟𝑟 (𝑆)

+
+∞

𝑑 𝜏 𝐶 (𝜏)
2𝜋∕𝜔𝜏

𝑑 𝜁 𝑒−𝜁𝐺𝑟𝑟 (𝑆 + 𝜔𝑅𝜏 𝜁 ) . (6)
∫0 ∫0 d

3 
Then, making use of Eq. (5), we can specify the displacement field for
the bearing profile as:

𝑢𝐵𝑟 (𝑆) = ∫

2𝜋 𝑅𝐵

0
𝑑 𝑆′ 𝐵𝑟𝑟(𝑆 − 𝑆′, 𝜔̄𝐵) 𝜎𝑟(𝑆′), (7)

where 𝜔̄𝐵 denotes the velocity of the contact patch at the bearing
interface.

𝐵𝑟𝑟 is determined by substituting 𝐺𝑟𝑟 (𝑆) in Eq. (6) with the follow-
ing expression:

𝐺𝐵
𝑟𝑟(𝑠) =

1 + 𝜈
2𝜋

[

− 𝜅
𝜅 + 1 (2 log𝑅𝐵 + 1) cos 𝜃

− 𝜅 + 1
2

B(𝜃) cos 𝜃 + (𝜅 − 1)A(𝜃) sin 𝜃
]

, (8)

with 𝜈 being the Poisson’s ratio, 𝜅 is the Kolosov’s constant, which is
qual to 𝜅 = 3 − 4𝜈, as the problem under investigation is a plane

strain problem. Furthermore, A(𝜃) = ar g(1∕2 − 𝑖∕2 cot (𝜃∕2)) and B(𝜃) =
og(2 − 2 cos 𝜃) = 2 log(2| sin(𝜃∕2)|), with 𝜃 = 𝑠∕𝑅𝐵 being the angle
ubtended by the arc 𝑠. More details about the derivation of the spatial
reen’s function in Eq. (8) can be found in Santeramo et al. (2023b).

On the other hand, the journal displacement field is described by:

𝑢𝐽𝑟 (𝑆) = ∫

2𝜋 𝑅𝐽

0
𝑑 𝑆′ 𝐽𝑟𝑟(𝑆 − 𝑆′, 𝜔̄𝐽 ) 𝜎𝑟(𝑆′), (9)

in which 𝜔̄𝐽 is the velocity of the contact patch at the journal interface.
Now, 𝐽𝑟𝑟 is determined by setting 𝐺𝑟𝑟 (𝑆) in Eq. (6) as:

𝐺𝐽
𝑟𝑟(𝑠) =

1 + 𝜈
2𝜋

[

1 − (𝜅2 + 1) log𝑅𝐽
𝜅 + 1 cos𝜙 − cos𝜙 − 𝜅 + 1

2

+ (𝜅 − 1)A′(𝜙) sin𝜙 − 𝜅 + 1
2

B(𝜙) cos𝜙
]

, (10)

with A′(𝜙) = ar g(−1∕2 − 𝑖∕2 cot (𝜙∕2)), and 𝜙 = 𝑠∕𝑅𝐽 . The detailed
erivation of 𝐺𝐽

𝑟𝑟(𝑠) can be found in Santeramo et al. (2023a).
Hence, to numerically solve the contact problem, we employ the nu-

erical scheme proposed in Carbone and Putignano (2013), Santeramo
et al. (2023a,b): the contact domain is discretized with 𝑁 elements, and
assuming that the discretization step is small enough to consider the
tress 𝜎𝑘 constant and equal to 𝜎𝑘 = 𝜎𝑟(𝑆𝑘) on the arc [𝑆𝑘−𝛼 𝑅, 𝑆𝑘+𝛼 𝑅],

we can write the displacement of the 𝑖th interval as {𝑢𝑖} = [𝑖𝑘(𝜔)]{𝜎𝑘}.
herefore, it is possible to rephrase Eqs. (7) and (9) as the following

linear systems (Santeramo et al., 2023a):

{𝑢𝐵𝑖 } = [𝐵
𝑖𝑘(𝜔̄𝐵)]{𝜎𝑘} (11a)

{𝑢𝐽𝑖 } = [𝐽
𝑖𝑘(𝜔̄𝐽 )]{𝜎𝑘} (11b)

Furthermore, the intercorrelation matrix entries 𝐵
𝑖𝑘 and 𝐽

𝑖𝑘 are de-
fined as 𝐵

𝑖𝑘 = 𝐵
𝑟𝑟
(

𝑆𝑖 − 𝑆𝑘, 𝜔̄𝐵
)

and 𝐽
𝑖𝑘 = 𝐽

𝑟𝑟
(

𝑆𝑖 − 𝑆𝑘, 𝜔̄𝐽
)

, which are
qual to:

𝐵
𝑟𝑟(𝑆) = 𝐽 (0)𝐿𝐵

𝑟𝑟(𝑆)

+ ∫

+∞

0
𝑑 𝜏 𝐶(𝜏)∫

2𝜋∕𝜔̄𝐵𝜏

0
𝑑 𝑧 𝑒−𝑧 𝐿𝐵

𝑟𝑟(𝑆 + 𝜔̄𝐵𝑅𝐵𝜏 𝑧), (12a)

𝐽
𝑟𝑟(𝑆) = 𝐽 (0)𝐿𝐽

𝑟𝑟(𝑆)

+ ∫

+∞

0
𝑑 𝜏 𝐶(𝜏)∫

2𝜋∕𝜔̄𝐽 𝜏

0
𝑑 𝑧 𝑒−𝑧 𝐿𝐽

𝑟𝑟(𝑆 + 𝜔̄𝐽𝑅𝐽 𝜏 𝑧), (12b)

in which

𝐿𝐵
𝑟𝑟(𝑆) = ∫

2𝜋 𝑅𝐵

0
𝑑 𝑆′ 𝐺𝐵

𝑟𝑟(𝑆 − 𝑆′)𝜒𝑟
(

𝑆′) , (13a)

𝐿𝐽
𝑟𝑟(𝑆) = ∫

2𝜋 𝑅𝐽

0
𝑑 𝑆′ 𝐺𝐽

𝑟𝑟(𝑆 − 𝑆′)𝜒𝑟
(

𝑆′) , (13b)

where, with reference to the particular contact problem, 𝜒𝑟 denotes a
unitary pressure distribution in the arc [−𝛼 𝑅, 𝛼 𝑅] (Santeramo et al.,
2023b).

Once the system of linear equations governing the solid viscoelastic
problem is set, we can focus on the equations that govern the fluid
ynamics of the system. To this regard, considering isoviscous fluids,
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and assuming no-slip boundary conditions at both solids interfaces, the
Reynolds equations in a polar reference frame can be written as (Venner
nd Lubrecht, 2000; Hamrock et al., 2004):
𝜕
𝜕 𝑠

(

ℎ3 𝜕 𝜎
𝜕 𝑠

)

= 12𝐯̃𝜂 𝜕 ℎ
𝜕 𝑠 , (14)

where 𝐯̃ is the entrainment speed, computed as the average of the
peripheral velocities of the surfaces, namely 𝐯̃ = (𝐯𝐵 + 𝐯𝐽 )∕2, in which
𝐯𝐵 and 𝐯𝐽 denote the peripheral velocity of a generic point on the
bearing and on the shaft respectively, namely 𝐯𝐵(𝜃) = 𝝎𝐵 ∧ (𝐏𝐵(𝜃) −𝐎)
and 𝐯𝐽 (𝜃) = 𝝎𝐽 ∧ (𝐏𝐽 (𝜃) − 𝐎′). Moreover, ℎ is the film thickness, and
𝜂 is the fluid viscosity. Specifically, the normal displacement of the
interacting pair profiles strongly affects the film thickness distribution.
Indeed, we have that ℎ(𝜃) = ℎ0 + 𝑔0(𝜃) + 𝑢𝐵𝑟 (𝜃) − 𝑢𝐽𝑟 (𝜃), with ℎ0 and
𝑔0(𝜃) being respectively the central film thickness and the gap between
the surfaces of the bodies in the undeformed configuration. For the
system under analysis in this paper, that is the journal bearing, 𝑔0(𝜃) =
𝑐(1 − 𝜖 cos(𝜃)) (Hamrock et al., 2004; Harris, 2007), where 𝑐 is the
bearing radial clearance, i.e. 𝑐 = 𝑅𝐵 − 𝑅𝐽 , and 𝜖 is the eccentricity
ratio, that is equal to 𝜖 = 𝑒∕𝑐, with 𝑒 being the eccentricity, which is
qual to 𝑒 = |𝐎′ −𝐎|. As shown in Hamrock et al. (2004) the previous

definition of 𝑔0(𝜃) holds for highly conforming profiles, i.e. for very
small 𝑒∕𝑅𝐵 ratios. When this condition is not met, a proper definition of
the separation 𝑔0 is needed (Hamrock et al., 2004). In addition, to take
into account hydrodynamic cavitation in the divergent section, where
he lubricant is subject to a tensile stress situation, Reynolds bound-

ary conditions (Hamrock et al., 2004) are employed. Then, Eq. (14)
s attacked by implementing a finite difference scheme (Venner and
ubrecht, 2000; Hamrock et al., 2004), thus obtaining the following

vector equation:

ℎ𝑖 = 𝑅𝑖𝑘(𝐯̃, 𝜂)𝜎𝑘. (15)

Thus, to assess the contact problem, we need to couple the solid
mechanics and the fluid dynamics (Elsharkawy, 1996; Venner and
ubrecht, 2000; Hamrock et al., 2004; Putignano et al., 2019) to
etermine the pressure distribution satisfying, at the same time, both

Eq. (11) and Eq. (15). In particular, an iterative scheme underrelaxed
with the Aitken acceleration approach (Irons and Tuck, 1969; Venner
nd Lubrecht, 2000; Profito and Zachariadis, 2015; Profito et al.,

2019) is implemented: starting from the film thickness estimation
̃ 𝑛, computed at the previous step, an estimated stress field 𝜎̃𝑘 is
obtained by inverting Eq. (15), and the new displacement field can
e determined from Eq. (11). Finally, it is possible to compute the film
hickness ℎ̃𝑛+1 for the subsequent iteration, and the iterative process
ontinues until the pressure distribution numerically converges in two
onsecutive iterations.

Ultimately, it is possible to focus our analysis to the friction losses,
which can be determined as the combination of the viscoelastic hys-
teretic dissipation and the fluid losses (Hamrock et al., 2004). Specifi-
cally, for each body, we can determine the net force and the total torque
respectively as:

𝐅𝑡𝑜𝑡 = 𝐅𝑛 + 𝐅𝜏 = 𝑅
[

∫

2𝜋

0
𝑑 𝜃 𝑝(𝜃)𝐧(𝜃) + ∫

2𝜋

0
𝑑 𝜃 𝜏(𝜃)𝐭(𝜃)

]

, (16)

and

𝐂𝑡 = 𝑅∫

2𝜋

0
𝑑 𝜃 (𝐏(𝜃) −𝐎) ∧ (𝑝(𝜃)𝐧(𝜃) + 𝜏(𝜃)𝐭(𝜃)), (17)

where 𝐎 denotes the bearing center, that corresponds to the origin
of the frame of reference sketched in Fig. 1, and 𝐏(𝜃) is the point, at
ngular coordinate 𝜃, of the deformed contour. Moreover, 𝐧(𝜃) and 𝐭(𝜃)
re the unit vectors, respectively normal and tangential to the deformed
rofile; ultimately, 𝑝 = 𝜎, and the viscous shear stresses 𝜏 acting on the
earing surface, i.e. 𝜏 = 𝜏𝐵 , and on the journal surface, i.e. 𝜏 = 𝜏𝐽 , are
btained as (Hamrock et al., 2004):

𝜏𝐵(𝜃) = − ℎ 𝜕 𝑝
−

𝜂(𝐯𝐵(𝜃) − 𝐯𝐽 (𝜃)) , (18a)

2𝑅𝐵 𝜕 𝜃 ℎ t

4 
𝜏𝐽 (𝜃) = − ℎ
2𝑅𝐽

𝜕 𝑝
𝜕 𝜃 +

𝜂(𝐯𝐵(𝜃) − 𝐯𝐽 (𝜃))
ℎ

. (18b)

Finally, it is of particular interest to quantify the viscoelastic con-
tribution to friction. Specifically, it is possible to compute the power
related to viscoelastic dissipation 𝑃𝑣,𝑑 , which is equal to:

𝑃𝑣,𝑑 = 𝜔𝑅∫

2𝜋

0
𝑑 𝜃 𝑝(𝜃) 𝜕 𝑢𝑟(𝜃)

𝜕 𝜃 . (19)

3. Numerical results

In this Section, in order to point out the implications of the ap-
proach previously developed, we consider a journal bearing operating
in steady-state conditions, where the bearing has a radius equal to
𝑅𝐵 = 0.1m, and the radial clearance 𝑐 is equal to 𝑐 = 𝑅𝐵 − 𝑅𝐽 =
5 ⋅ 10−4 m. Specifically, when referring to soft solids in the following
study, we employ a single relaxation time material with glassy modulus
𝐸∞ = 100MPa, 𝐸∞∕𝐸0 = 100, and relaxation time 𝜏 = 1 s.

As a first step, we investigate a classic Elastohydrodynamic lubrica-
tion (EHL) problem: the journal is rigid and the bearing is elastic with
elastic modulus being equal to the rubbery modulus 𝐸0, and Poisson’s
atio 𝜈 = 0.5, while the fluid is isoviscous with a viscosity 𝜂 being
qual to 𝜂 = 0.001Pa ⋅ s. As pointed out in Fig. 2 for a dimensionless

net force 𝐹𝑡𝑜𝑡 = |𝐅𝑡𝑜𝑡|∕𝐸0𝑅𝐵 = 2.2 ⋅ 10−3, the solution in terms of
dimensionless film thickness and pressure distributions (solid lines),
defined respectively as ℎ̃ = ℎ∕𝑐 and 𝑝̃ = 𝑝∕𝐸0, differs from what we
would obtain by solving the classical non-conformal EHL problem, that
is, by employing the usual half-plane Green’s function to compute the
elastic deformation of the solids (Johnson and Johnson, 1987; Barber,
2002; Carbone and Mangialardi, 2004) (dashed lines). Crucially, we
can conclude that the half-plane approximation is not suitable for
lubricated conformal contact problems and justify the necessity of
developing a numerical method properly tuned. This aspect is of the
utmost importance when the bearing response is analyzed, and it must
be carefully taken into account in design processes.

Now, we can focus on the analysis of the viscoelasticity effects for
a polymer journal bearing. In particular, we investigate three different
contact conditions: rigid journal on soft bearing liner (HS), soft journal
on rigid bearing liner (SH), and soft journal on soft bearing liner (SS).
As shown in Fig. 3, the pressure and film thickness distributions are dra-
matically affected by the choice of material pairing: it is thus clear that
viscoelasticity plays a pivotal role. Crucially, this leads to a different
attitude angle of the resulting force (red arrows in Fig. 3), i.e. the angle
the net force generates with respect to the line of centers (Hamrock
et al., 2004), and, ultimately, on the angular position of the application
point. Clearly, such a variation in the resultant force has important
consequences on the rotor dynamics of the entire system where the
bearing is applied. Calculations are carried out for dimensionless speeds
for the bodies being respectively equal to 𝜔̃𝐵 = 𝜔𝐵𝜏 = 0.2 and
̃ 𝐽 = 𝜔𝐽 𝜏 = −0.4, while keeping the dimensionless resultant force
𝑡̃𝑜𝑡 constant and equal to 𝐹𝑡𝑜𝑡 = 2.2 ⋅ 10−3: the Hersey parameter 𝐻

s then equal to 𝐻 = 𝜂 ̃v𝑅𝐵∕|𝐅𝑡𝑜𝑡| = −4.5 ⋅ 109. Thus, starting with the
S configuration, we observe a clear peak in the pressure distribution
t the leading edge due to solid viscoelasticity. Incidentally, the leading
dge of the solid contact corresponds to the flow outlet, i.e. where the
ubricant exits the lubricated contact. Here, we find a minimum in the
ilm thickness, due to both flow conservation and the viscous resistance
gainst the instantaneous change of deformation.

When we consider the SH case, we retrieve a very different outcome.
ow, the bearing is rigid, while the journal is linear viscoelastic and,
oherently with the kinematics of the problem, we have that the
luid inlet, i.e. where the fluid is sucked in the contact, corresponds
o the leading edge for the journal: hence, the peak in the pressure
istribution. Finally, in the SS configuration, both the contacting pairs
re linear viscoelastic and, since the system is now more compliant,
he contact region is now larger than that observed in the previous
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Fig. 2. The dimensionless film thickness ℎ̃ = ℎ∕𝑐 (blue) and pressure 𝑝̃ = 𝑝∕𝐸0 (red) distributions for a fixed value of the dimensionless resultant force 𝐹𝑡𝑜𝑡 = |𝐅𝑡𝑜𝑡|∕𝐸0𝑅𝐵 = 2.2 ⋅10−3.
he numerical predictions are carried out in EHL regime, where the journal is rigid and the bearing is elastic, with elastic modulus 𝐸 = 1 MPa and Poisson’s ratio 𝜈 = 0.5, and
ompared with the solution obtained using the half-plane Green’s function (dashed lines).
Fig. 3. The deformed profile (solid black line), the pressure distribution (solid red line) and the resulting net force 𝐅𝑛𝑒𝑡 (red arrow) on the left; the dimensionless film thickness
ℎ̃ = ℎ∕𝑐 (solid blue line) and the dimensionless pressure 𝑝̃ = 𝑝∕𝐸0 (solid red line) distributions on the right. The results are carried out for a fixed value of the Hersey number
𝐻 = −4.5 ⋅ 109 and three different configurations: hard-on-soft (HS), soft-on-hard (SH) and soft-on-soft (SS), with 𝜔̃𝐵 = 0.2 and 𝜔̃𝐽 = −0.4. The axes 𝑥̃ and 𝑦̃ refer to the normalized
𝑥- and 𝑦-coordinates, i.e., 𝑥̃ = 𝑥∕𝑅𝐵 and 𝑦̃ = 𝑦∕𝑅𝐵 .
cases. Furthermore, looking at the pressure distribution, it is possible
o notice two peaks at the inlet and at the outlet of the contact zone,
orresponding to the leading edges of the journal and the bearing
 i

5 
respectively. To this regard, the reader should observe that, for each
viscoelastic body, the leading edge is the region where the contact is
nitiated and where a larger stiffness and, thus, a larger pressure are
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Fig. 4. The undeformed (dashed lines) and the magnified deformed (solid lines) contours of the journal (black) and the bearing (teal), with 𝐾 = 50 being the magnification factor.
The calculations are carried out for a soft-on-soft (SS) configuration, with a fixed value of the Hersey number 𝐻 = −4.5 ⋅ 109, and 𝜔̃𝐵 = 0.2 and 𝜔̃𝐽 = −0.4. The axes 𝑥̃ and 𝑦̃ refer
o the normalized 𝑥- and 𝑦-coordinates, i.e., 𝑥̃ = 𝑥∕𝑅𝐵 and 𝑦̃ = 𝑦∕𝑅𝐵 . The arrows refer to the leading (L.E.) and trailing (T.E.) edges for each viscoelastic solid.
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shown (Carbone and Putignano, 2013). Indeed, as Fig. 4 shows for the
latter case, which refers to a soft journal on a soft bearing, the location
of the leading regions can be elicited from superposing the undeformed
contours (dashed lines) and the deformed contours (solid lines) of the
bodies: the region where the deformed profile, magnified to improve
the readability of the figure, is closer to the undeformed contour
corresponds to the leading edge (L.E.) zone, while larger displacements
are observed at the trailing edge (T.E.), where the material is still
relaxing upon the passage of the load. In fact, looking at the right panel
of Fig. 4, it is straightforward to find the leading region for the shaft (in
lack) at the fluid inlet, i.e. on the right, where the minimum deviation
etween deformed and undeformed profile occurs; on the contrary,

for the bearing (in green) this condition is met at the fluid outlet,
while large deviations between the actual (deformed) and the reference
(undeformed) profiles are retrieved at the fluid inlet, which corresponds
to the trailing edge. Hence it is clear that, in viscoelastic lubricated
contacts, besides the Hersey number 𝐻 , the dimensionless speeds of
the interacting pair, i.e. 𝜔̃𝐵 and 𝜔̃𝐽 , are fundamental in governing the
response of the system, since they capture the complex rheology of such
materials.

Now, it is interesting to study the system response when the ab-
solute value of the shaft angular speed |𝜔̃𝐽 | increases, while keeping
fixed the total load 𝐹𝑡𝑜𝑡 = 2.2 ⋅ 10−3 and the bearing angular speed
𝜔̃𝐵 = 0.2. Specifically, we focus on a hard-on-soft (HS) configura-
ion, where the shaft is considered rigid, while the bearing liner is
inear viscoelastic. Crucially, the impact of viscoelasticity effects on
he bearing performance is quite evident, as shown in Fig. 5. A clear

asymmetry in the pressure distribution occurs due to the different
relaxation between leading and trailing edges; in particular, the leading
edge for the bearing is located at the fluid outlet, where a peak
in the pressure distribution and, correspondingly, a minimum in the
film thickness distribution are retrieved. As soon as we increase the
shaft angular velocity, the fluid load-bearing capacity increases since
more lubricant is entrained in the lubricated contact zone. Hence, the
reduced values of the maximum pressure and the very peculiar film
thickness distributions, the latter characterized by increasing values of
the central film thickness ℎ0, and by a certain degree of asymmetry
related to the viscoelastic response of the bearing material. Ultimately,
the upper graph in Fig. 6 presents, on the left 𝑦-axis, the resisting torque
6 
parameter for the bearing, i.e. 𝝌𝐵 = 𝐂𝐵∕|𝐅𝑡𝑜𝑡|𝑅𝐵 , and for the journal,
.e. 𝝌𝐽 = 𝐂𝐽∕|𝐅𝑡𝑜𝑡|𝑅𝐵 , computed as presented in Section 2 with respect

to bearing center 𝐎. Incidentally, it is of particular interest to highlight
the viscoelastic contribution to the resisting torque parameter for the
bearing, i.e. 𝝌𝑣,𝐵 = 𝐂𝑣,𝐵∕|𝐅𝑡𝑜𝑡|𝑅𝐵 , directly obtained by the computation
of the power related to the viscoelastic dissipation (see Eq. (19)): it is
vident how the viscoelastic contribution to the overall bearing torque
s important, especially at low shaft speeds. Indeed, as discussed before-
and, if the entrainment speed increases, the load-bearing capacity of
he lubricant is enhanced: the bearing liner experiences lower levels of

deformation and, consequently, the bulk energy dissipation diminishes.
urthermore, on the right 𝑦-axis of the former graph, the eccentricity
atio 𝜖 as a function of the angular speed of the shaft |𝜔̃𝐽 | is depicted.

In particular, it can be noticed that it follows a monotonic trend and,
oherently with an increasing lubricant entrainment in the lubricated
ontact zone, we have higher values of the central fluid film thickness
nd, thus, lower values of the eccentricity ratio.

With regards to the influence of the applied load, as clear in the
pper panels, for a fixed value of dimensionless speed 𝜔̃𝐵 , the resisting
orque parameter decreases with the load consistently with what is
bserved in a classic Stribeck curve for the friction coefficient. On
he other hand, the viscoelastic hysteresis has to grow with the load,
iven the larger deformation and the related dissipation: as a result, the
elative fraction of 𝝌𝐵 due to the viscoelastic frictional effects, that is
𝑣,𝐵∕𝝌𝐵 , increases with the load and may go up to 65% for an applied

oad equal to 𝐹𝑡𝑜𝑡 = 4 ⋅ 10−3.

4. Conclusions

In this paper, we have developed a Boundary Element approach
to assess the lubricated contact problem of a polymer journal bearing
operating in steady-state conditions. Crucially, the aim of this study
is to highlight how viscoelasticity strongly affects the quantities that
characterize the bearing performances, such as pressure, film thickness,
and friction. To this end, a proper definition of the Green’s functions
is needed: this is clear when we focus on a journal bearing in elasto-
hydrodynamic lubrication (EHL) regime, where the shaft is considered
rigid, while the bearing liner is elastic. The numerical outcomes are
compared, in terms of fluid film thickness and pressure distributions,
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Fig. 5. The dimensionless film thickness ℎ̃ = ℎ∕𝑐 (solid blue line) and the dimensionless pressure 𝑝̃ = 𝑝∕𝐸0 (solid red line) distributions at different journal speed 𝜔̃𝐽 for a fixed
alue of the net force 𝐅𝑡𝑜𝑡. The calculations are carried out for a hard-on-soft (HS) configuration, and a fixed 𝜔̃𝐵 = 0.2.
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with what is obtained by employing the half-plane Green’s function:
considerable deviations are observed, showing that the latter is not
appropriate to analyze such a conforming circular contact problem.
Further, we focus on the VEHL case and we show that the contact
configuration is critical in determining the system response. Three
different configurations have been considered, respectively the hard-
on-soft configuration (HS), in which the shaft is rigid and the bearing
is linear viscoelastic, soft-on-hard configuration (SH), in which the
shaft is linear viscoelastic and the bearing is rigid, and the soft-on-
soft configuration (SS), where both the solids are linear viscoelastic:
dramatic changes are retrieved in the pressure and fluid film thickness
distributions, thus on friction. In particular, the HS case has been
further investigated, for a fixed value of the net force 𝐹𝑡𝑜𝑡 and a constant
angular speed of the bearing 𝜔̃𝐵 , while increasing the angular speed of
the shaft |𝜔̃𝐽 |, showing the significant impact of the complex rheology
of the viscoelastic bearing on the system behavior and, crucially, on
friction. The latter is the result of the combination between fluid
viscous losses and the viscoelastic hysteretic term. Thus, the resisting
torque parameters for the bearing and the shaft are presented: for
increasing values of the shaft angular velocity, higher values of the
friction torque are obtained; conversely, we notice that the higher the
shaft speed, the lower the eccentricity ratio. This is due to higher values
of the central film thickness, as more fluid is entrained in the lubricated

contact region.

7 
Interestingly, we also quantify the power dissipation related to the
hysteretic behavior of the viscoelastic material. This, in turn, enables
us to quantify the contribution of the viscoelastic torque to the overall
friction torque of the bearing. In particular, it has been observed that
his contribution diminishes as the speed of the journal is increased,
.e., for larger values of the entrainment speed. This result is due to the
ower deformation experienced by the material as the capacity of the lu-
ricant to sustain the load increases. Furthermore, for increasing values
f the applied load, the overall friction torque parameter 𝝌 tends to de-
rease consistently with what is observed in the classic Stribeck curve,
hile the relative fraction due to the viscoelastic hysteresis grows given

he larger bulk deformation and the consequent dissipation.
Ultimately, the results presented in this study underline that, in

order to completely assess visco-elastohydrodynamic lubrication prob-
lems, the Hersey number is not the only parameter governing the sys-
tem response, but the dimensionless speeds of the viscoelastic bodies,
i.e. 𝜔̃𝐵 and 𝜔̃𝐽 , have to be taken into account carefully, as they embody
the complex rheology of the materials. Indeed, as highlighted in this
work, the bearing response changes dramatically as different contact
configurations are considered, thus significantly affecting the rotor dy-
namics of the system in which the bearing is applied. As possible future
evelopments, we observe that the present formulation can be further
xtended to include transient and thermal effects, as temperature plays

a crucial role in the mechanical response of viscoelastic materials.
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Fig. 6. In the upper panel, the resisting torque parameter for the journal 𝝌𝐽 = 𝐂𝐽 ∕|𝐅𝑡𝑜𝑡|𝑅𝐵 (green curve), for the bearing 𝝌𝐵 = 𝐂𝐵∕|𝐅𝑡𝑜𝑡|𝑅𝐵 (in black) on the left 𝑦-axis; on the
ight 𝑦-axis, the eccentricity ratio 𝜖. Below, the viscoelastic contribution to total resisting torque parameter for the bearing 𝝌𝑣,𝐵 = 𝐂𝑣,𝐵∕|𝐅𝑡𝑜𝑡|𝑅𝐵 (in black) on the left 𝑦-axis; the
atio 𝝌𝑣,𝐵∕𝝌𝐵 [%] on the right 𝑦-axis. The results are carried out for a hard-on-soft (HS) configuration at different journal dimensionless speed 𝜔̃𝐽 , and different levels of load 𝐹𝑡𝑜𝑡,
espectively equal to 𝐹𝑡𝑜𝑡 = 10−3 (left), 𝐹𝑡𝑜𝑡 = 2.2 ⋅ 10−3 (center), and 𝐹𝑡𝑜𝑡 = 4 ⋅ 10−3 (right). The bearing dimensionless speed is kept constant and equal to 𝜔̃𝐵 = 0.2.
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